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Abstract 

In Compton scattering light sources, a short (ps to ns) 
laser pulse and a high brightness relativistic electron beam 
collide to yield tunable, monochromatic, polarized 
gamma-ray photons. The properties of the gamma-ray 
phase space is studied, in relation to the full electron 
bunch and laser pulse phase spaces, along with 
collimation, nonlinear effects and other sources of spectral 
broadening. This process has potential high impact 
applications in homeland security, nuclear waste assay, 
medical imaging and stockpile surveillance, among other 
areas of interest. Detailed theoretical modeling is outlined 
to aid the design of Compton light sources and provide 
optimization strategies relevant within the context of 
nuclear photonics applications. 

INTRODUCTION 
In Compton scattering light sources, a laser pulse is 

scattered by a relativistic electron beam to generate 
tunable radiation. Because of the inhomogeneous nature 
of the incident radiation, the relativistic Lorentz boost of 
the electrons is modulated by the ponderomotive force 
during the interaction, leading to intrinsic spectral 
broadening and brightness limitations. These effects are 
outlined, along with an optimization strategy to properly 
balance the laser bandwidth, diffraction, and nonlinear 
ponderomotive force. 

PONDEROMOTIVE DEPHASING 
QED units are used throughout: length, mass, time, and 

charge are measured in units of 
    =  / m0c ,   m0 ,     / c , 

and e, respectively. In these units, the permittivity of 
vacuum is  ε0 = 1/ 4πα . We consider a relativistic electron 
interacting with a polychromatic plane wave described by 
the 4-potential: 

 
Aµ =σ µ A φ( ) ; φ = kµx

µ , σ µσ
µ = −1 . In 

the Lorentz gauge, ∂µA
µ = 0 = kµσ

µA ' φ( ) ; and the 
Lorentz force equation can be solved exactly to obtain the 
electron nonlinear 4-velocity: 

uµ = uµ
0 + Aµ − kµ

Aν Aν + 2u0
ν( )

2kλu0
λ = uµ

0 + εµA φ( ) + kµ
A2 φ( )
2kλu0

λ ;

εµ =σ µ − kµ
σνu0

ν

kλu0
λ .

 

In cases where the recoil parameter, µ = kµq
µ , remains 

small, and spin effects can be ignored, the differential 

spectral brightness is adequately described by the classical 
radiation formula: 

d 2N
dqdΩ

= αq
4π 2 π

µ uµe
iqν x

ν

dτ
−∞

+∞

∫
2

.  

Here, qµ  is the scattered radiation 4-wavenumber; π µ  

is its 4-polarization; and xµ τ( )  is the electron 4-
trajectory, parameterized by the proper time, τ . 

For a plane wave of constant amplitude, 
A φ( ) = A0 cosφ , the electron 4-velocity is integrated to 
yield the 4-position: 

xµ φ( ) = xµ0 +
dxµ
dτ

dτ
dϕ

dϕ
0

φ

∫

= xµ
0 + uµ

0 φ
κ 0

+ εµ
A0
κ 0

sinφ + kµ
A0
2

8κ 0
2 2φ + sin2φ( ).

 

κ 0 = kµu0
µ = dφ / dτ  is the incident light-cone variable 

and xµ
0  is the initial 4-position. In the linear limit, where 

 A0 1 , the radiation integral can be approximated as: 

αqA0
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Here, we have linearized the complex exponential; 
dropped the dc term; and neglected terms in A0

2 , except 
for the rectified 2nd harmonic in the radiation phase. For a 
square pulse, the integral is performed to yield: 
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.  

λ = qµu
µ  is the scattered light-cone variable and Δφ  is 

the duration of the pulse. Focusing on the positive 
frequency sinc2  spectrum, we note that the primary peak 
corresponds to a null argument, while the first zero is 
obtained when the argument is equal to π ; we can then 
quantify the onset of significant ponderomotive dephasing 
as described in Fig. 1: starting from the linear case, where 
A0 → 0 , we find the Doppler shift condition, κ − λ = 0 ; 
for a finite amplitude, the primary peak is downshifted, 



and the first zero is located at Δφ
κ κ − λ − µ

4κ A0
2( ) = π . The 

ponderomotive dephasing onset is: µ
4κ 2 A0

2Δφ = π . 
In the more general case of an arbitrary incident 

radiation pulse, the scattered radiation spectrum is 
proportional to: 
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The weakly nonlinear dephasing term, averaged over an 
optical cycle, plays an important role because it can result 
in a significant accumulated phase shift for sufficiently 
long pulses. In fact, this term is proportional to the total 

radiation probability: 
 
N = σ jµΦ

µd 4x∫  2
3α A '2 dφ

−∞

+∞

∫ . 

 
Fig. 1 Quadratic sinc spectra in the linear limit and with 
nonlinear dephasing. 

THREE-DIMENSIONAL EFFECTS 
We now address the fully three-dimensional case; 

working within the context of the paraxial approximation, 
for a linearly polarized, cylindrical Gaussian transverse 
distribution at focus, the transverse potential takes the 
form: Ax = A0g φ( )eiφ−r 2 1−iz( )−1 1− iz( )−1 . Here, φ = k0 t + z( )  
is the phase of the wave; z0 = 1

2 k0w0
2  is the Rayleigh 

length, expressed in terms of the focal waist, and axial 
wavenumber; z = z / z0 ; and r = r /w0 . For an electron 
on-axis, the axial position as a function of phase is easily 
derived; using the rapidity, ρ  the ballistic component is: 

 dz / dφ = uz /κ  e
−ρ sinhρ / k0 . The transverse potential 

driving the electron oscillation, measured along the 
ballistic initial electron trajectory can now be expressed as 
a function of phase. 

For a synchronized reference electron; and in the ultra-
relativistic case, where  e

−ρ sinhρ  1
2 : 

 
 
Ax r = 0,z φ( ),φ⎡⎣ ⎤⎦  A0g φ( )eiφ 1− i φ

k0
2w0

2( )−1 . 

The pulse energy can be evaluated by integrating the 
Poynting vector flux through the focal plane over the 
pulse duration. Using x = φ / Δφ ; and taking into account 

 g '/ g 1 : 

 
W0 

A0
2Δφk0w0

2

16α
g2 x( )dx

−∞

+∞

∫ =W0 g2 x( )dx
−∞
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∫ .  

Since the maximum spectral density is radiated on-axis, 
we specialize our analysis to that situation, and for head-
on collisions; the radiation phase is: 

 qµx
µ  qe−2ρφ / k0 = χφ . 

The linear radiation integral reads: 

 S0 =
4α 2

π 2 W0η
2χ g x( )

1− iη2x
eixΔφ 1−χ( ) dx

−∞

+∞

∫
2

.    

Here, we have introduced the normalized Doppler-
shifted frequency, χ = qe−2ρ / k0 ; the scale parameter 

η = Δφ / k0w0 , which measures the balance between 
bandwidth and diffraction; and used the normalized 
incident pulse energy. For illustration, consider the case 
of a Gaussian temporal envelope, where the spectrum can 
be evaluated analytically. Rescaling the frequency as 
χ = 1

η2 +
Δφ
2 χ −1( ) , in the limit Δφ→∞ , we have: 

 S0  4α
2W0η

−2e−2/η
4

e4χ /η
2

Φ2 χ( ).  

The maximum value of the on-axis spectrum is 
obtained at  χ* 

<1 ; fΔφ = S0 χ * η( ),η;Δφ⎡⎣ ⎤⎦ / 4α
2W0 , is a 

strong function of η  that also weakly depends on Δφ , as 

illustrated in Fig. 2; the maximum is 
 
f∞ η*( )  3.15379  

 
at 

 η
*  1.71024 , and 

 
χ * η*( )  −0.389338 . 

 
Fig. 2 Maximum angular and spectral brightness as 
function of η , for a fixed total energy, in the linear 
regime. 



Physically, this is significant, as it shows that for a 
fixed incident laser pulse energy, the maximum number of 
photons scattered per unit solid angle and frequency is 
obtained when the transverse and axial scales are 
matched: Δφ =η*k0w0 , which corresponds to a proper 
balance between bandwidth and diffraction. Furthermore, 
this condition is independent of the normalized potential: 
longer pulses diffracting slower will yield the same peak 
spectral density as long as the matching condition is 
satisfied: this approach is quite general. 

For a self-consistent analysis, the effects of nonlinear 
dephasing are now included; the axial momentum is: 

 
uz r = 0,φ( )  sinhρ + k0

2κ A0
2 1

2 ge
− iφ / 1− iz φ( )⎡⎣ ⎤⎦ + c.c.{ }.  

The spectral density now reads: 

α
16π 2

A0
2Δφ 2

k0
χ g x( )

1− iη2x
e− ixΔφ 1−χ( )e

iχ A0
2Δφ
2

g2 y( )
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x

∫
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−∞

+∞

∫
2

.

 

To study the interplay between bandwidth, diffraction, 
and weakly nonlinear effects, consider a Gaussian 
temporal envelope: g x( ) = e− x2 . We start from a linear 
spectrum with fixed bandwidth, Δφ−1 ; and matched in 
terms of diffraction: η =η* . The ponderomotive 
dephasing, δ = A0

2Δφ / 2 , is then varied to generate 
nonlinear spectra. This is equivalent to varying the 
incident pulse energy. For each spectrum, the maximum 
value of the main spectral line is determined, and plotted 
as a function of incident pulse energy on Fig. 3; for two 
different incident pulse durations corresponding to CPA 
(ps) and non-CPA (ns) laser technologies, respectively; 
and for three values ofη .  

 
Fig. 3 Maximum brightness as a function of W0  for 

Δφ = 103  (dashed) and Δφ = 106  (solid), and 3 values of 
η . The energy and brightness scales correspond to the 

long pulse; they have to be multiplied by 10−3  for the 
short pulse.  

The (linear) matched beam produces the highest 
brightness, which scales very nearly linearly with the 
incident energy: higher energy allows one to use longer 

pulses and softer foci, which yield the best performance 
for our optimization metric. The most interesting 
conclusion is that the brightness degrades as one enters 
the nonlinear regime. Physically, this can be understood 
as follows: the nonlinear dephasing simply redistributes 
the scattered energy into parasitic channels, without 
increasing the main spectral line. 

Finally, the maximum on-axis spectral and angular 
scattered photon number density, in units of photons per 
0.1% bandwidth per mrad2, for a balanced Gaussian-
Lorentzian beam is determined as follows: we first define 

Bx =
d 2N
dqdΩ

ΔqΔΩ;

= α
4π 2 e

2ρA0
2Δφ 2χ 2h η,Δφ,χ,A0( )×10−9;

h = e− x
2−ixΔφ 1−χ( )

1−iη2x e
iχ A0

2Δφ
2

e−2 y
2

1+η4y2
dy

0

x

∫
dx

−∞

+∞

∫
2

.

 

Here Δq = q ×10−3 , and ΔΩ = 10−6 . Next, for a fixed 
value of Δφ , the brightness triple maximum is found 
numerically: 

 
 Bx

*  α
4π 2 A0

*2Δφ 2e2ρ ×10−9 × 0.241115 ;  

with A0
*2Δφ
2

e−2 x
2

1+η*4 x2 dx−∞

+∞

∫ = 2.704 × 2π . The incident pulse 

duration is Δφ / k0 ; the focal spot is w0 = Δφ / k0η
* ; and 

the energy is W0 = π
2 A0

*2Δφ 2 / 16αk0η
*2( ) . 

 
Fig. 4 Optimized nonlinear Gaussian-Lorentzian 
parameters as function of laser energy: A0

*2  (dashed); w0  
(dotted); Δt  (dashed-dotted); and Bx

*  (solid), for ρ = 7.6  
( γ = 103 ). 
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